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ABSTRACT
Advances in modern hardware, such as increases in the size of
main memory available on computers, have made it possible to
analyze data at a much higher rate than before. In this paper, we
demonstrate that there is tremendous room for improvement in the
processing of analytical queries on modern commodity hardware.
We introduce BIPie, an engine for query processing implementing
highly efficient decoding, selection, and aggregation for analytical
queries executing on a columnar storage engine in MemSQL. We
demonstrate that these operations are interdependent, and must be
fused and considered together to achieve very high performance.
We propose and compare multiple strategies for decoding, selection
and aggregation (with GROUP BY), all of which are designed to
take advantage of modern CPU architectures, including SIMD. We
implemented these approaches in MemSQL, a high performance
hybrid transaction and analytical processing database designed for
commodity hardware. We thoroughly evaluate the performance of
the approach across a range of parameters, and demonstrate a two
to four times speedup over previously published TPC-H Query 1
performance.
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1 INTRODUCTION
Hardware technology advancements have made it possible to pro-
cess data at a much faster rate. This has enabled companies to make
decisions on real-time data by sending analytical queries to a data-
base. These queries often have an ad-hoc nature, complex filters,
and tend to benefit little from pre-built indices. As such, those an-
alytical queries tend to scan a very large volume of data. In order
to save on disk and memory bandwidth, the data is often encoded
∗Work done while at MemSQL
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to use a smaller number of bytes. This encoding offers tremendous
opportunities for query performance improvement, as we demon-
strate in our discussion of enhancements known collectively as
Business Intelligence ProcessIng on Encoded Data (BIPie1).

We introduced BIPie in MemSQL 6 to improve the performance
of queries accessing data stored in a columnar table. We specifically
focus on queries filtering the input table (WHERE clause), grouping
on one or more columns or expressions (GROUP BY clause), and
aggregating one or more expression (i.e. SUM(x)). This is achieved
by performing query processing on the encoded data directly by
using vector processing with SIMD and by specializing operators
to optimize performance for certain runtime parameters.

Operating on encoded data allows BIPie to avoid decoding and
materializing decoded values. Encoded data also provides additional
information available as part of the encoding.

BIPie implements multiple variants of the selection and aggrega-
tion operators, and chooses between them at runtime. Each opera-
tor implementation is optimized for a different set of parameters,
such as the number of bits per value, the selectivity, the number
of groups, and the number of aggregates to compute. For instance,
special versions of aggregation are designed to optimize the cases (i)
when there is a very selective filter, (ii) when a very small number
of distinct groups is used, or (iii) when there is a high number of
integer sums. These variants of operators are constructed by merg-
ing one of three selection strategies with one of three aggregation
strategies.

Gather selection leverages the gather instruction on modern mi-
croprocessors and is optimized for lower selectivity. Special Group
selection is optimized for higher selectivity and is fused with the
aggregation strategy to perform selection and aggregation in the
same step. Compaction selection is a safe fallback.

In-Register aggregation is optimized for values with a lower num-
ber of bits and lower number of groups. Sort-Based aggregation is
optimized for lower selectivity and a large number of aggregates
to compute. Multi-Aggregation is optimized for a larger number of
aggregates to compute.

The paper is structured as follows: first we introduce some back-
ground on the MemSQL database engine and the real-time analyti-
cal workload that is optimized by BIPie (Section 2). Then, we cover
an overview of the architecture of BIPie (Section 3) before diving
into the details of the selection strategies (Section 4) and the aggre-
gation strategies (Section 5). Then, we compare each combination
of strategies across a broad range of parameters, and evaluate BIPie
in the context of TPC-H Query 1. We compare the performance of
Query 1 with other database engines.
1Also, MemSQL engineers have a deep fondness of pies.
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2 BACKGROUND
MemSQL is a distributed memory-optimized SQL database, which
excels at mixed real-time analytical and transactional processing
at scale. MemSQL can store data in two formats: an in-memory,
row-oriented store and a disk-backed, column-oriented store. Ta-
bles can be created in either rowstore or columnstore format, and
queries can involve any combination of both types of tables. Mem-
SQL takes advantage of in-memory data storage with multiversion
concurrency control and novel, memory-optimized, lock-free data
structures to enable reading and writing data with a high concur-
rency, allowing real-time analytics over an operational database.
The MemSQL columnstore uses innovative architectural designs to
enable real-time streaming analytical workloads with low-latency
queries over tables with ongoing writes [21]. Along with its scal-
able distributed architecture, these innovations enable MemSQL to
achieve sub-second query latencies over large volumes of changing
data. MemSQL is designed to scale on commodity hardware and
does not require any specialized hardware.

MemSQL utilizes a shared-nothing architecture; nodes in the dis-
tributed system do not share memory, disk, or CPU. There are two
tiers of nodes: scheduler nodes (called aggregator nodes) and execu-
tion nodes (called leaf nodes). Aggregator nodes serve as mediators
between the client and the cluster, while leaf nodes provide the data
storage and query processing backbone of the system. Users route
queries to the aggregator nodes where they are parsed, optimized,
and planned. The optimizations discussed in this paper will focus
on execution strategies within a single leaf node. Further details
about distributed query execution and optimization in MemSQL
can be found in [10].

Query plans are compiled to machine code using LLVM [14]
and are cached to expedite subsequent executions. MemSQL caches
compiled query plans to provide the most efficient execution path.
The compiled query plans do not pre-specify values for the param-
eters, allowing MemSQL to substitute values upon request, and
enabling subsequent queries of the same structure to run quickly,
even with different parameter values.

MemSQL strives to allow customers to run theMemSQL database
on a wide range of hardware platforms, including on-premises and
cloud installations. At the same time, MemSQL has a performance-
first orientation. As such, we leverage hardware trends using state-
of-the-art query execution approaches, such as the ones described
in this paper.

2.1 Columnar Encoded Data
BIPie focuses on processing columnar-encoded data. This section
introduces the column-store format used by MemSQL. More details
can be found in [21]. The MemSQL columnstore index is split be-
tween a mutable region and an immutable region. The immutable
region of the columnstore index is column-oriented and compressed.
Rows can be marked as deleted in the immutable region, but cannot
be updated. The mutable region is row-oriented, uncompressed, and
updatable. The mutable region represents a small fraction of rows,
recently added or modified. It is compressed into the immutable re-
gion by a background task. This paper focuses on query processing
on the immutable region.

Rows in the immutable region of the columnstore are grouped
into segments. Each columnwithin a segment is compressed, stored,
and accessed separately. All columns preserve the same order of
records. A segment contains approximately one million records.
Segment columns are encoded using one of multiple possible en-
codings. Among the supported encodings in MemSQL are: delta
encoding, run length encoding, dictionary, and integer bit packing.
The encodings are chosen during compression of rows based on
two factors: size of the resulting compressed data, and usefulness
of the encoding for query execution.

Run length encoding (RLE) is useful when it is common for the
same value in a column to occurmany times in consecutive rows. An
encoded RLE stream consists of a sequence of pairs (value, count);
the value is the uncompressed value, and the count specifies how
many times the value is repeated in consecutive rows. Dictionary
encoding has two components: a dictionary containing all distinct
values, and a bit packed sequence of integers identifying elements
in this dictionary. Bit packing encoding represents all the values in
the sequence using the same number of bits. We use the smallest
number of bits needed to represent the maximum index in the
dictionary. The bits are concatenated into one vector without any
gaps between values.

Each segment contains metadata for each of the columns, such
as the minimum and maximum values that appear in each column
of the segment. This metadata has two applications. The metadata
allows for segment elimination during query processing when the
query can determine that the filter expression on this columnwould
reject all contained rows. The metadata is also used to determine
if overflow is possible for numeric values when they are used in
expressions and sums. If we can determine that no overflow can
occur, then overflow checks can be avoided for the segment. In
this paper, we make the assumption that it is always possible to
determine that overflow is impossible within a segment, and we
not discuss overflow checks during presentation of the algorithms.

MemSQL is a distributed database. Tables are partitioned based
on a key specified by the user, and the partitioning properties of the
data are leveraged by the query optimizer to avoid repartitioning of
the data during join or aggregation, if the data is already partitioned
correctly.

Query processing on the MemSQL columnstore, including all
query processing algorithms described in this paper, follows a batch
processing structure. A moving window of a fixed number of rows
(up to 4096 rows in MemSQL) is used when scanning the column-
store table. The rows within this window form a batch of rows.
We entirely process one batch before moving to the next one and
we never revisit previous batches. This technique was previously
employed in MonetDB/X100 [7].

2.2 Simplifications
In order to facilitate the presentation of the algorithms, we make
several simplifying assumptions about the representation of input
data and the type of database queries that process it.

First, we assume that there is a single group by column with no
more than 256 unique values. We also assume that the group by col-
umn uses dictionary encoding in combination with bit packing. All
distinct values are assigned consecutive integer identifiers starting
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from 0. Then, the value of the group by column for every row gets
replaced with a corresponding id, called group id. Finally, group
ids are stored in a bit vector sequentially, with no gaps, using the
smallest possible fixed number of bits. This encoding format allows
the use of arrays indexed by group ids for updating per-group ag-
gregate results with no need to reference the dictionary until the
point of outputting aggregation results. We also assume that the
order of rows is arbitrary, specifically that data is not sorted on
the group by column. We assume that all aggregate columns are of
integer data types no larger than 8 bytes, contain no null values,
are encoded using bit packing, and do not use dictionary encoding.

Whenever we mention bit unpacking, we always mean out-
putting unpacked values in an array using the smallest power-
of-two word size that all values fit in (1, 2, 4, 8). Using the smallest
word is important for achieving optimal performance in some cases.

Those simplifications are not restrictions to the implementation
of BIPie. They simply streamline the explanation for clarity. Expand-
ing the techniques beyond these simplifications is a mechanical
and straightforward extension of the techniques we describe.

2.3 Workload
This paper focuses on executing analytical workloads on encoded
data stored in columnar format. Specifically, it focuses on pushing
selection and aggregation into the columnar scan. BIPie efficiently
executes queries of the following form directly on encoded colum-
nar data:
SELECT

g,
count(*),
sum(agg1), ..., sum(aggn)

FROM
columnarTable

WHERE
<filter expression>

GROUP BY
g;

Identifiers “g“, “agg1“, ..., “aggn“ reference columnstore columns
directly. We do not discuss the evaluation of the filter expression.
We assume in this paper that its result has already been computed
and that its cost is small relative to the entire query cost. Filters
and all aggregates are optional.

The techniques introduced by BIPie are applicable to any work-
load that consists of queries either directly in this form, or of queries
that can be decomposed into queries of this form. A good examples
of this workload is TPCH query 1, which we will use to evaluate
BIPie in section 6.3.

3 BIPIE OVERVIEW
We introduced BIPie in MemSQL 6 to improve the performance of
relatively simple queries accessing data stored in a columnstore
index. Specifically, we targeted queries filtering the input table,
grouping on one or more columns or expressions and aggregating
one or more columns or expressions. The approach used to provide
a performance improvement rests on three pillars: (i) operating
on encoded data, (ii) using vector processing with SIMD and (iii)
specialization of operators.

Generated 

code

High 

level 

components

Filter
Group ID 

Map

Aggregate 

Processor

Low level 

SIMD library

Aggregation 

results

Batch 

with 

decoded 

columns

Encoded 

segment 

columns

Data 

structures

JIT 

compiled 

expressions

Vector 

Toolbox

Figure 1: BIPie Architectural Overview

Operating on encoded data provides three main benefits: (i) BIPie
can often avoid decoding values either fully or partially, (ii) BIPie
can avoid materializing decoded values and (iii) BIPie leverages
the additional information available to us as part of encoding. For
example, dictionary encoding already provides the injective map-
ping from column values to small integers, which can be used as a
perfect hashing function of that column.

Operating on encoded data without materializing decoded val-
ues provides the important benefit of processing vectors of inputs
in simple loops that repeat the same predictable sequence of in-
structions on independent data elements present in vectors [7].
Predictability and independence inside the loop lead to a very good
utilization of the CPU instructions pipeline. Data independence
also means that the loops can use SIMD for parallel processing of
tuples of consecutive elements.

Specialization of operators allows BIPie to outperform the previ-
ous implementation by having multiple special implementations of
operators and selecting between them at runtime. Each operator
implementation is optimized for different inputs and has different
restrictions on the inputs it can handle. For instance, this could
mean implementing special versions of the aggregation operators.
One implementation is used only with a very selective filter. An-
other implementation is used for a very small number of distinct
groups. Another implementation is used when there are a large
number of integer sums to compute.

The choice of aggregation method occurs at run-time, and the
method can change from segment to segment. The choice of the
selection method can change from batch to batch, and is based on
the actual selectivity calculated after evaluating the filter for the
batch.

Figure 1 illustrates an overview of the components of the Mem-
SQL columnstore scan. Specifically, it focuses on the single-segment
scan, with the main data structures it operates on. Segment man-
agement, segment elimination, and deleted row management are
omitted for clarity.
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BIPie integrates decoding, filtering, and aggregation with group-
ing into the columnstore scan. The scan combines elements of
just-in-time compilation, vectorization, and SIMD processing. The
implementation is separated into three layers: (i) the Vector Tool-
box, (ii) the generated code, and (iii) the high-level components
containing operator logic.

The Vector Toolbox is a library of low level vector functions.
The Vector Toolbox is highly optimized, has versions compiled for
different generations of CPUs that can be automatically switched
at run-time based on the hardware that the product is running on,
and has no dependencies on any other code of the engine. Vector
Toolbox functions can operate on decoded and encoded data.

The generated code is used, among other things, for all scalar
expressions in the query, including expressions that are part of
a filter, grouping expressions or inputs to aggregates. Generated
functions always operate on decompressed column data. This is
essential to maintain a low query compilation time, otherwise each
expressionwould have to be compiled for each possible combination
of encodings.

Finally, there is a higher level logic of the columnstore scan or-
ganized into classes responsible for decoding, filtering, grouping,
and aggregation. The high level logic orchestrates execution, choos-
ing at run-time between multiple implementations of the same
operation, calling low-level functions from other layers.

The filter component evaluates the filter expression on a columnar-
oriented batch of records, combines the result with information
about deleted records, and produces a selection vector indicating
which records are selected by the query.

Aggregation is decomposed into two components: the Group ID
Mapper and the Aggregate Processor. The Group ID Mapper takes
in the group by columns specified in the query and produces a single
vector of integer group ids. The Group ID Mapper replaces the hash
table lookup step in a classical implementation of aggregation. It
leverages optimization opportunities present when operating on
encoded data. For example, dictionary encoded data provide the
group id mapper with a perfect collision-free hashing. Exploiting
this property provides a significant performance improvement. The
Aggregate Processor takes in a group id vector and a selection vector
produced by the Filter component, and computes the aggregates
for each group. The Aggregate Processor chooses among the many
aggregation strategies implemented in the vector toolbox at run
time.

We select an aggregation strategy for each segment. The aggre-
gation strategy for each segment is selected based on the maximum
number of groups in the segment as calculated from the segment
metadata and the number and type of aggregates.

The paper focuses on the part of VectorToolbox that is used
by the Aggregate Processor. We will show multiple ways of using
SIMD to accomplish the task of the Aggregate Processor and we
will look at how each of these methods is useful for different kinds
of inputs. These methods are not universal, but they can add signif-
icant speedups in many specific, but useful and common, cases of
queries.

4 SELECTION
After evaluating the filter expression for rows in the columnstore
table being scanned, we get a byte vector, called the selection byte
vector. The selection byte vector marks positions of elements that
should be removed with a byte value of zero, while the remaining
positions have the value 0xFF. This is consistent with how AVX2
comparison instructions store the output for single byte elements.
Further, in order to exclude deleted records from being processed,
we write a zero in the selection byte vector position for each deleted
record in the batch.

Another form of selection vector that we sometimes use is a
selection index vector, which is an array that contains the ordinal
positions of qualifying rows. The high-level idea of selection con-
sidered in this paper is to remove unwanted rows from processing
and leave the remaining data from columns in a form that can be
further processed without the need to reference the selection byte
vector or selection index vector.

Selection can naively be implemented using a conditional branch
instruction dependent on the filter result. This approach severely
limits data level parallelism, e.g. SIMD. In addition, it limits the
effectiveness of the CPU pipeline, since the CPU cannot accurately
predict which instructions to execute next. In BIPie, the selection
operator avoids conditional branching dependent on the filter result.
This makes the code path very predictable for the CPU, and makes
very efficient use of CPU pipelining. The absence of diverging code
paths for adjacent rows also makes it possible to efficiently leverage
SIMD.

4.1 Compacting operator
The compacting operation takes two inputs: (i) a selection vector
and (ii) an input vector. The compacting operator produces an
output vector. The selection vector contains a byte per value of
the input vector. It is very efficient to produce this representation
through a vectorized execution of the filter expression.

Compaction is equivalent to the following sequential pseudocode:
a counter C is initialized to zero. The operator iterates through the
selection vector. Whenever the selection vector is zero, C is incre-
mented. When the value is non-zero, we write to the output vector
and increment C . Depending on the mode of operation of the com-
paction operator, a different value is written. In index vector mode,
the counterC is written to the output vector. In physical compaction
mode, the Cth value from the input vector is copied to the output
vector. The physical compaction mode requires the input vector to
be unpacked, and element sizes must be a power of two.

A data-parallel and branch-free version of this code can effi-
ciently be implemented in SIMD [20]. Both variants of the com-
paction operation use between 0.4 and 0.6 CPU cycles per row in
the CPU cache.

4.2 Gather Selection
Gather selection works in two steps. The first step is to use the
index vector mode of the compacting operator to transform the
selection vector into a selection index vector. The second step starts
by iterating through the selection index vector. For each index, we
fetch a word containing the bit packed value from the encoded
column. We then extract the actual value from this word.
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Fetching, extracting, and storing unpacked values can be done
entirely using data-level parallelism with the AVX2 instruction
set. Specifically, fetching can use a gather instruction that can load
multiple array elements for a given sequence of indices intomultiple
lanes of a SIMD register. The second step of this operation needs
to be repeated for every group by column and aggregate column
involved in the query. It combines bit unpacking and removing
filtered-out rows.

Table 1 presents the performance, in CPU cycles per row, of
gather selection for different bit widths. As expected, the perfor-
mance slows down as the bit width increases because fewer ele-
ments can be packed in a SIMD register.

Bit width of input column 5 10 20
CPU cycles per row 1.08 1.33 1.63
Table 1: Gather Selection Performance

The main difference between the gather selection and the com-
paction operation in physical compaction mode is that the gather
selection operation only unpacks values that are selected, while the
’physical compaction’ mode of the compacting operator requires
the entire input column to be unpacked.

4.3 Selection by Special Group Assignment
It is very common to combine selection and aggregation in a single
query. In fact, the query shape that BIPie targets combines selection
and aggregation. In many cases, very few rows are rejected by
the filter. The special Group Assignment Selection technique is
designed to optimize this scenario by fusing together the filtering
component and the group id mapping component. As such, in
contrast to other selection methods, Selection by Special Group
Assignment returns a group id map.

The following observation motivated this approach to selection.
We were running a simple SQL query of the form
SELECT a, sum(x) FROM t WHERE b = 1 GROUP BY a

where both columns "a" and "b" had a small number of distinct
values. We noticed that this query is visibly slower than
SELECT a, b, sum(x) FROM t GROUP BY a, b

even though the result of the first query is the subset of the rows
output by the second one, and can be computed in post-processing
with negligible cost. In the second query of the example, we re-
placed the filter expression with a new group by column that was
introduced to represent all rows that should be rejected.

In the first query, the gather selection uses an indexed read to
fetch the value of the column x. Fetching the column x requires
reading an address calculated based on the selection vector. This
limits the algorithm’s ability to leverage the pipelining of the CPU.
The second query executes a sequential scan of the column, has
a more predictable memory access pattern, and leverages CPU
pipelining more efficiently.

The idea of the proposed method is to create a special, unused
group index. For each position that is not set in the selection byte
vector (for each filtered out row), we assign the same unused group
index. Next, the chosen aggregation method processes all the rows
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regardless of filter, and using the modified group ids. As the result
is outputted, we discard the results for the special group that was
created just for the purpose of filtering. This process can also be
seen as pushing grouping and aggregation ahead of parts of the
selection operation in the processing pipeline.

5 GROUPING AND AGGREGATION
After the selection strategy has been applied, we need to compute
the aggregates. This is done by combining a group id map, which
indicates the group id each record belongs to, with an input batch.
An in-depth description of how to generate the group id map in the
general case is outside of the scope of the paper. In simple cases, for
example, when grouping by a single dictionary encoded column,
the group id is simply the dictionary id. After the group id map and
the selection vector has been produced, an aggregation strategy
is applied to compute the aggregate (i.e., compute the SUM of a
value for each group). To achieve truly high performance, this step
has to be optimized for the underlying hardware, and adapted to
the parameters of the data. The parameters of the data include
the number of groups, the number of aggregates being computed,
the number of bits of each value being aggregated, and even the
selectivity. This section first covers the naive Scalar Method and
evaluates it. Then, we go on to cover Sort-Based SUM Aggregation,
In-Register Aggregation and Multi-Aggregate SUM Aggregation.

5.1 Scalar Method
We start with an analysis of the naive scalar (no SIMD) implementa-
tion of group by aggregation with sum. Algorithm 1 demonstrates
a naive strategy to execute a single sum.

Algorithm 1 Scalar Aggregation
for (int i = 0; i < number_of_rows; ++i)

sum[group_column[i]] += sum_column[i];

Figure 2 (Single Array) illustrates the CPU cycles per row for
the scalar implementation. Interestingly, for a very small number
of groups this code runs noticeably slower than for six or more
groups (2.9 CPU cycles per row with two groups vs 1.65 cycles per
row with six groups). This likely happens due to the high chance of
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adjacent rows trying to make updates to the same memory location,
resulting in CPU pipeline stalls. Similar effects can be observed even
with a large number of groups whenever there is a high frequency
group index in the input column. This can happen with a partially
sorted group by column or when there is data skew. The simple
fix is to unroll the aggregation loop twice or more, and use two or
more arrays with sums, switching between them in a round robin
manner for consecutive rows and finally merging the partial results
from all these arrays at the end of the computation.

If there are multiple sums in the same query, then aggregation
can be done either one column at a time or one row at a time. In
the first case we would fully process the first aggregate column for
a batch of rows before moving on to the next column. In the latter
case, we would update all sums for a single row before moving
on to the next row. The second method, with the row-oriented
layout of aggregation results in the array, performs better. Figure 3
shows results in CPU cycles per row per aggregate for 32 groups
and varying number of sums using both methods. Additionally, it
shows the impact of unrolling the inner loop over all columns in
the row-at-a-time variant.

5.2 Sort-Based SUM Aggregation
Sort-Based Sum Aggregation is our first aggregation strategy using
SIMD. This strategy requires sorting of the row indices within each
batch of rows by the group index for the row. The resulting sorted
array can be viewed as a concatenation of N sub-arrays for N groups,
some of which are potentially empty, and each containing indices
of all rows within a batch that fall into the same group. Once the
batch is sorted appropriately, we compute sums for each group, one
aggregate column at a time and one group at a time. We fetch the
aggregate column values for a given group by iterating through
the row indices, and compute the sum. We utilize the SIMD gather
instruction to optimize fetching the aggregate column values given
an array of row indices.

We use bucket sort for sorting, each bucket corresponding to a
single group. First, we compute the number of items in each group,
just as if a COUNT(*) aggregation were part of the original query.
If a COUNT(*) aggregation is part of the query, we only compute
it once and reuse the results. This gives us the number of rows
per bucket, from which we get sub-ranges of the output array that

1 sum 2 sums 4 sums
4 groups 3.13 2.21 1.74
8 groups 3.59 2.49 1.89
16 groups 3.61 2.48 1.92

Table 2: CPU cycles per row per aggregate for Sort-Based
SUM Aggregation

correspond to different groups. In the second pass over the data, we
append each row index to the sub-range associated with its group.
For a small number of groups, it is possible to get write conflicts
for bucket counters for adjacent rows, resulting in performance
penalties similar to what we mentioned in section 5.1 in the case
of scalar group by sum. We avoid write conflicts by using two
separate counters for each bucket, one for even and one for odd
rows. This technique provides the same effect as the the multi-array
aggregation of section 5.1.

When summing values from aggregate columns, we perform
decoding, or bit unpacking, on the encoded inputs as the values are
aggregated. The decoding, selection, and aggregation are performed
together in one optimized unit. Rows filtered out are excluded from
the array of sorted row indices. If gather or compacting selection is
used, the rows are excluded before sorting. In the case of selection by
special group assignment, the rows are rejected during the sorting.

The Sort Based SUM Aggregation is a good fit for scenarios with
a combination of low filter selectivity and high number of aggre-
gates. The extra cost of sorting is fixed regardless of the number
of aggregates, and aggregate processing after sorting does not re-
quire any extra steps in the presence of filters. Table 2 shows the
measured costs of running this strategy expressed in CPU cycles
per row per aggregate, with varying number of groups and sums
(with 23 bit-packed aggregate columns and no filters). The table
shows that the cost per aggregate reduces with the number of ag-
gregates, as the fixed sorting cost is amortized over a larger number
of aggregates. This method works with aggregate columns in their
raw bit-packed, non-filtered representation. The other aggregate
methods presented require all inputs to be decoded first. This un-
derrepresents the performance of this approach, as the decoding
cost is not included in results shown for other methods below.

5.3 In-Register Aggregation
In-register aggregation is the second SIMD-friendly strategy for
computing aggregates that we present in this paper. It is based on
the idea of keeping intermediate results entirely in CPU registers
instead of in memory. The technique applies to both count and
sum, but is limited to small number of groups, up to around 32 on
today’s hardware.

Each aggregate in this approach is processed separately. To un-
derstand the data layout, we use an example in which we are com-
puting the row count per group. There are N groups. Group indices
each encoded using 1 byte, and are all in the range 0 to N − 1.

As the input rows are processed sequentially, the group ids are
loaded into a SIMD register. The ith lane (byte) of this register is
holding data for the ith row in the vector. Each lane of the register
uses its separate virtual array of row counts per group. N SIMD
registers are used to store all the virtual arrays. Each register keeps
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Figure 4: In-Register Aggregation Data Layout

Algorithm 2 In-Register aggregation
for i=0..N-1

mask=simd_compare(V, i)
virtualArray[i] = simd_add(virtualArray[i], mask)

simd_compare(V, i):
mask = [0...0]
for each lane in V:

if V[lane] = i:
mask[lane] = 0xFF

else:
mask[lane] = 0

return mask

simd_add(v1, v2)
result = [0...0]
for each lane in v1:

result[lane] = v1[lane] + v2[lane]
return result

the counts for one group. In the case of the COUNT aggregate, we
can optimize away processing for the groupN −1 by subtracting the
count of each group from the total count, thus saving one register.
Figure 4 illustrates the layout of virtual arrays using SIMD registers.
In the figure, four lanes are used, and there are four groups.

The pseudocode to update the virtual arrays for the next vector
of group id values (denoted V ) is provided in Algorithm 2. For
clarity, we also provide scalar equivalent code for the SIMD intrinsic
used. The simd_compare primitive is used to create a mask, which
is a SIMD register containing as many lanes as V. For each lane
of V, if the content of the lane is equal to i, then each bit of the
corresponding lane in the mask is 1. Otherwise, each bit of the
corresponding lane in mask is 0. After computing the mask, the
mask is added to the virtual array for the counter using SIMD
addition.

Variant Input size size/counter Instructions/32 values
COUNT(*) 4 bits 1.5
SUM(x) 1 byte 16 bits 3
SUM(x) 2 bytes 32 bits 7
SUM(x) 4 bytes 32 bits 12

Table 3: Number of instructions per group for 32 values with
In-Register Aggregation
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Figure 5: Performance of In-Register Aggregation

After processing a group id vector, the counters are merged
into total counters. First, each lane of each virtual array has to be
negated, because adding the mask (0xFF) is equivalent to adding -1,
which has left the negation of the count in the lane. Then the virtual
arrays are collapsed into a single counter per group. The merged
results include the calculated value of the one missing counter
based on the total row count.

MemSQL contains the implementation of specialized versions of
this strategy for N up to 32, for count and for sum of one byte, two
byte, and four byte values. The generation of these implementations
is assisted by macros and the template engine present in modern
compilers. The appropriate implementation is selected at runtime.
It is possible to determine an upper bound on the number of groups
in a batch by leveraging the information from the encoding. For
example, in the case of group by of a dictionary encoded column,
the number of distinct entries in the dictionary can be used as the
upper bound of the number of groups.

Table 3 summarizes the number of CPU instructions per group
actually used in our implementation of each variant.

Figure 5 illustrates the comparison of performance for all the
variants of the grouping aggregates using virtual arrays in registers
for an increasing number of groups. Scalar group by count(*) data
has been added as a reference. As expected, the performance linearly
degrades with the number of groups, as an operation has to be
executed for each group. Queries using fewer bytes for each value
perform much better, as each register has more lanes, and more
SIMD parallelism can be extracted from those implementations.
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Number of Sums Sizes (bytes) CPU cycles/row/sum
2 8-2 1.37
3 8-4-1 1.43
4 8-8-4-2 0.91
5 8-4-4-2-2 0.77
5 4-4-2-2-2 0.75
Table 4: Sample Performance of Multi-Aggregate

5.4 Multi-Aggregate SUM Aggregation
Multi-Aggregate SUM Aggregation is the third SIMD-friendly ag-
gregation strategy presented in this paper. This strategy applies
to queries with multiple sums. Unlike the previous two methods,
this strategy uses data-level parallelism horizontally instead of ver-
tically; multiple aggregates for the same input row are processed
together, instead of multiple input rows for the same aggregate.

Multi-Aggregate SUM can also be seen as the evolution of the
scalar group by sum implementation for more than one aggregate
column from section 5.1. We have shown in section 5.1 that row-
at-a-time aggregation for multiple sums is faster than column-at-a-
time aggregation. It could be further improved if we packed inputs
for multiple sums for the same row into one SIMD register and
executed only one set of load-add-store instructions for all of them.

Our inputs are stored column-wise in memory. In order to as-
semble rows we need to reorganize values from the columns being
summed. We consider a simple case of four 64-bit input columns
aggregated using 64-bit arithmetic. After loading one 256-bit SIMD
vector worth of data (four rows) from each of the four columns, we
get a 4x4 matrix stored in four registers. Transposing this matrix
will give us the desired layout of the data in these registers. This
can be done in eight AVX2 instructions (four PUNPCKLQDQ and
four PUNPCKHQDQ instructions).

In the general case, there can be different numbers of input
columns and they can store elements of different byte sizes. This
poses a challenge for the transposition. BIPie uses a composition of
template functions to create specialized SIMD implementations that
cover all interesting cases. BIPie expands 1 and 2-byte input values
to 4-bytes and everything larger to 8-bytes when generating output.
We do this to guarantee that we can safely sum up to 65536 rows
using 64-bit additions in SIMD lanes without getting an overflow
for input values of up to 4-bytes (8-byte elements must rely on
other methods for overflow checks). BIPie supports an arbitrary
number and combination of sizes of input columns as long as, after
the expansion, all elements for a single row can fit into a 256-bit
SIMD register, with 32-bit expanded elements being 32-bit aligned,
and with 64-bit elements being 64-bit aligned. An example of value
packing is shown in Figure 6. In the example, the letters “A“, “B“,
“C“, “D“ and “E“ denote column names, while the following index
corresponds to the position of an entry within that column. Each
row in the figure represents a SIMD register.

Table 4 contains examples of performance results for 32 groups,
and different numbers of aggregate columns and combinations of
sizes of their elements. Results are expressed as the number of CPU
cycles per row per aggregate. The table shows that the more sums
are done, the higher the efficiency per sum.
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tion
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Figure 7: Comparison of Selection Strategies

6 EVALUATION
In this section, we evaluate the performance of BIPie. First, we
compare selection methods. Then, we perform an in-depth com-
parison of all combinations of selection and aggregation methods
presented, evaluating each method across a range of parameters,
such as selectivity, number of groups, number of aggregates com-
puted, and number of bits used to encode values. Then, we evaluate
the performance of BIPie in the context of TPC-H Query 1 and
compare with previously published results.

All the tests were conducted on a computer with a single Intel
Core i7-6700 3.4 GHz CPU and 32GB of RAM. The processor has
four hardware cores and eight hardware threads. The evaluation
of performance of individual operations was done outside of Mem-
SQL engine using VectorToolbox library directly. The evaluation
of query performance is done using a modified MemSQL engine.
In every experiment, we utilize all available hardware threads si-
multaneously. This captures the effects related to the sharing of
hardware resources, both between collocated hardware threads and
between different physical cores. All of the input data is always
in memory. We use inputs of at least hundred of millions of rows
to make sure that the input does not fit into last level CPU cache.
This ensures that we include the effects of main memory scan into
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Figure 8: Performance of aggregation techniques, 8 groups, 7 bits encoding

our evaluation. We always run the same experiment ten times, and
report the median of these ten runs.

As a unit of time measurement, we always use the elapsed CPU
cycles per physical core, per input row, per computed sum aggregate.
We further denote this as cycles/row/sum, except for the operations
that do not compute aggregates and for SQL queries, for which
cases we skip division by number of aggregates and use cycles/row.
We find this unit gives a good intuitive understanding of the overall
cost of an operation.

There are few more reasons why we believe reporting the CPU
cycles per physical core per row is more useful than reporting the
actual time. To a large degree, clock cycles abstract away some
aspects of the hardware, such as the clock frequency or number of
cores. Using clock cycles allows estimating what could be expected
on a different machine with the CPU from the same family. Using
CPU cycles per physical core per row also abstracts away the size
of the input data in terms of number of processed rows. Division
by number of computed sums helps in turn to observe how each
additional aggregate added to a query becomes cheaper to compute
in relation to previous ones. This is especially relevant to demon-
strate the effect of the optimizations targeting the computation of
multiple aggregates.

6.1 Selection Methods Comparison
Intuitively, the gather method is good for low selectivities, the
compact method for medium selectivities, and special group for
selectivities close to 1.0.

Figure 7 illustrates the performance measurements of selection
with bit unpacking for twomethods: compacting and gather. Graphs
have been plotted for different bit widths of packed values (4, 7, 14
and 21). For each bit width, there is a fixed filter selectivity beyond
which compacting starts to outperform gather. The graph shows
gather performance to the left of this point and compacting to the
right of this point, so only the best of two methods is shown for
each selectivity and bit width. For example, compaction selection in

4 bits encoding outperforms the gather selection at a 2% selectivity.
In the case of 21 bit encoding, gather outperforms compaction for
selectivities below 38%. Performance numbers are expressed in CPU
cycles per row.

6.2 Comparison of all combinations of
Selection and Aggregation in BIPie

In this section, we evaluate the combined performance of selection
and aggregation. We pair each of the three SIMD selection methods
described (gather, compaction, and special group) with each of the
three SIMD aggregation methods (sort-based, in-register, and multi-
aggregate). This gives us a total of nine variants. We evaluate and
compare the performance of all nine combinations across a range
of parameters: the number of groups, the bit width used in the
encoding of the columns that are being aggregated, the selectivity
of the filter, and the number of aggregates (sums in our experiment).

Figures 8, 9, and 10 illustrate the best performing strategy for
all selectivities across a various number of aggregates. The three
tables shown contain the measurements repeated for three different
numbers of groups and column encodings: 7 bit encoding with 8
groups (Figure 8), 14 bit encoding with 12 groups (Figure 9) and
28 bit encoding with 32 groups (Figure 10). In each cell, we deter-
mine the winning strategy and indicate the cycles/row/sum that it
achieves. Groups of adjacent cells sharing the same best strategy
have the same color. Each group is labeled with the name of the
grouping strategy (’Sort’ for sort-based, ’Register’ for in-register,
’Multi’ for multi-aggregate) followed by the name of the optimal
selection strategy that was combined with the grouping strategy.

In this experiment, we use a very large input that is fetched from
main memory to ensure the cost of main memory access is included.
We use all available hardware threads. All input columns, group by
columns, and aggregate columns are integers stored in a bit packed
format.
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Figure 10: Performance of aggregation techniques, 32 groups, 28 bits encoding

As we increase the number of groups and number of bits used for
encoding, from Figure 8, to Figure 9, and to Figure 10; we can notice
a significant increase in the overall cost per sum. The increase is
almost linear and is caused by a combination of the limitations
of algorithms such as in-register aggregation, the higher costs of
decoding values, and the higher memory bandwidth needed to
bring input data into CPU cache.

Within each figure, the amortized cost per aggregate reduces
with each new aggregate until it becomes stable. This is a result
of two main factors. Processing of the filter byte vector and the
group by column is a fixed cost that does not increase with the
number of aggregates. There are also noticeable benefits from using
specialized algorithms optimized for handling multiple aggregates.

The last column in Figure 8, 9, and 10 represents the scenario with
no row filtering (100% selectivity). The constant portion of the
total cost is reduced to the loading and decoding of the group by
column. In Figure 8, there is no difference in the amortized cost
per aggregate because the in-register aggregation strategy is used.
By contrast, when the multi-aggregate method is used (Figure 10),
there is a significant difference in the amortized cost per aggregate.

Next we analyze how the costs change with the selectivity. In-
terestingly, in most of the cases, there is not much change in the
cost when varying the selectivity. In the first row in Figure 8, pro-
cessing of all rows turns out to be even cheaper than selecting
and aggregating just 10 percent of them. The latter case needs to
handle the extra operation of loading the selection byte vector from
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Engine Scale Factor #Rows (Approximate) #Cores Clock Time [s] Clocks/Row Date published
EXASol 5.0 [5] 100 600000000 120 2.8 0.6 336 09/22/14
Vectorwise 3 [1] 100 600000000 16 2.9 1.3 100.5 04/15/14
SQL Server 2014 [4] 1000 6000000000 60 2.8 4.1 114.8 12/15/14
SQL Server 2016 [6] 10000 60000000000 96 2.2 13.2 46.5 11/28/16
Vectorwise 3 [2] 300 1800000000 16 2.9 3.8 98.0 05/10/13
Vectorwise 3 [3] 100 600000000 16 2.9 1.3 100.5 05/13/13
Hyper [16] 10 60000000 4 3.6 0.12 28.8 09/01/17
Voodoo [16] 10 60000000 4 3.6 0.162 38.9 09/01/17
CWI/Handwritten [11] 100 600000000 1 2.6 4 17.3 09/01/17
Hyper/Datablocks [12] 100 600000000 32 2.27 0.388 47.0 06/01/16
MemSQL/BIPie 100 600000000 4 3.4 0.381 8.6

Table 5: Comparison of TPC-H Query 1 performance with previously published results

memory and converting it to an index selection vector to be used
by the gather selection. Processing the selection vector has a cost
proportional to the number of all input rows. As we increase the
number of sums, this constant cost has smaller impact on per ag-
gregate value. This explanation is not sufficient to fully understand
Figure 8. We observe that experiments with low selectivity (10%)
have a similar number of cycles/row/aggregates as experiments
with 100% selectivity, even as the number of sums increase. We
should notice that with a small number of bits per value, even if
we selectively fetch a small portion of values, we are still likely
to touch every cache line. Hence, the traffic from main memory
to CPU cache will be very similar in both cases, with and without
filter. The in-register aggregation method for a small number of
groups is fast enough that the memory fetch dominates the cost.

In the results of this experiment, compacting selection is almost
never a winner. However, it should be noted that this experiment
does not consider more complex forms of aggregates, such as sums
over arbitrary arithmetic expressions. The result of the experiment
between compact and special group selection depends on the cost of
post-filter processing of a row. As this cost grows, the compaction
becomes a better choice. We can see in Figure 10 there are a few
cells in the middle range of selectivities where compaction is the
best approach. This indicates that both methods are very close in
performance numbers for this combination of parameters.

For small bit width of encoded values in aggregate input columns
and small number of groups, in-register group by aggregation is a
clear winner. For higher bit widths and larger number of groups,
multi-aggregate strategy is the best choice since its performance is
not very sensitive to both of these parameters; unlike in-register
method which linearly depends on both. For In-Register Aggre-
gation, a smaller bit width means a higher degree of data level
parallelism with SIMD, and smaller number of groups corresponds
directly to smaller number of instructions.

6.3 Evaluation of BIPie in TPC-H Query 1
In this section, we put the techniques described in this paper to the
test in an actual end-to-end processing scenario by running query
1 of the TPC-H benchmark using a modified MemSQL engine.
SELECT
l_returnflag,
l_linestatus,

sum(l_quantity),
sum(l_extendedprice),
sum(l_extendedprice * (1 - l_discount)),
sum(l_extendedprice * (1 - l_discount) * (1 + l_tax)),
avg(l_quantity),
avg(l_extendedprice),
avg(l_discount),
count(*)
FROM
lineitem

WHERE
l_shipdate <=
date '1998-12-01' - interval '90' day

GROUP BY
l_returnflag,
l_linestatus
ORDER BY
l_returnflag,
l_linestatus;

TPC-H Query 1 is a great example of a query that can benefit
from the optimizations demonstrated in this paper. Query 1 is a
single table scan containing a range filter on a date column select-
ing 98% of the rows. The query aggregates values into four groups,
grouping on two string columns, both containing no more than
three distinct values. All aggregates are either sums or averages
with an extra count(*) aggregate. Two out of seven aggregates are
computed over the results of a simple arithmetic expression involv-
ing multiple source columns of the table. The techniques presented
in this paper also apply to multi-column group by, although gen-
erating the group id map for multi-column group by is out of the
scope of this paper.

We use TPC-H at a scale factor 100 for our experiment. For this
scale factor, the table that will be scanned contains close to 600
million rows, but the encoded columns that are used in query 1 can
fit into the memory of the machine that we used. We sort and shard
LINEITEM table on l_orderkey column, which is not used in this
query, so we do not take advantage in any way of the order of rows
in the table.

Now, let us discuss how the execution of query 1 is implemented.
All operations described here work on a batch of rows (4096 rows
in MemSQL) at a time. For each batch of rows, the filter is evaluated



SIGMOD’18, June 10–15, 2018, Houston, TX, USA M. Nowakiewicz et al.

using integer comparison using SIMD instructions, and its result
is stored as a byte vector. Integer dictionary ids for both string
group by columns are bit unpacked, stored in vectors of one byte
elements, and then combined into a single integer values from the
range 0 to 5. Even though the query outputs four groups, based on
metadata we calculate that six groups are possible. Another seventh
group is introduced by combining the byte vector of group indices
achieved so far with the byte selection vector obtained from filter
function (Special Group Selection). We evaluate the expressions
using code generated at runtime. The code generated at runtime
does not use SIMD. The In-Register Aggregation method is used for
calculating the COUNT(*) aggregate. The Multi-Aggregate group
by method is used to calculate all the sums. All five calculated sums
can be updated for a single row in one load-add-store sequence of
instructions, since the intermediate results fit into a 256-bit word.

In order to be able to compare the performance of Query 1 on
different database management systems, we normalize various pub-
lished results for various scale factors and represent them all in
terms of cycles/row. We multiply execution time by nominal CPU
clock frequency, multiply that by total number of physical cores
on which the system is running, and finally divide by total num-
ber of rows in the table, which is proportional to scale factor. We
acknowledge that this way of normalization is not a fair compar-
ison, since it ignores many differences in the database setup and
hardware configuration, such as different maximum column values
for different scale factors, different memory speeds and differences
coming from different CPUmicroarchitectures. Still, we believe that
this is a meaningful overview of the progress on how fast query 1
can be executed. The authors of those publications put a special
effort into configuring both hardware and database in an effort to
achieve optimal results, applying their expertise in using respective
products. Also, query 1 requires little synchronization coming from
parallel processing, which limits the performance loss coming from
high number of CPU cores. Furthermore, the query stresses CPU
more heavily then the memory bandwidth. All selected publications
are recent and utilize recent Intel CPUs.

BIPie achieves 8.6 CPU cycles/row. This processing cost is 2x
lower than the recently published hand-written implementations
by Gubner et al[11], and 3.3x lower than the fastest database engine
implementation (Hyper).

7 RELATEDWORK
There has been significant prior work on implementing database
operators using SIMD. Zhou et al used SIMD to implement scan
and join. A technique is also provided for aggregation without a
group by clause [23]. More recently, work from Polychroniou et
al. presented various techniques to make a number of query pro-
cessing algorithms SIMD friendly. The paper introduced methods
to optimize the use of a hash table using SIMD [17]. Willhalm et
al. introduced techniques for SIMD-friendly decoding of values
encoded in a columnstore and for the application of filters on en-
coded data using SIMD [22]. SQL Server in-memory extensions
also implement a scan on encoded data, using SIMD decoding and
SIMD filtering [13], as does DB2 BLU [18] and SAP HANA [22].

Voodoo uses static analysis to automatically introduce data-
parallelism using SIMD [16]. Hyper compiles query using LLVM,

but applies a tuple-at-a-time approach [15]. DataBlocks utilizes
SIMD filtering on encoded data in the context of a hybrid transac-
tion and analytics database using LLVM compilation [12].

GPU Databases [9] such as MapD [19], Kinetica, and BlazingDB
aim to improve the performance of analytics by leveraging the
massive parallelism of a GPU. In their widely-cited paper, Boral and
DeWitt [8] made the case that using special-purpose hardware for
database systems is not a good strategy, because general-purpose
hardware advances at a faster pace than other hardware. Its unclear
at this point whether GPUs are special-purpose or general-purpose.
BIPie demonstrates that by optimizing algorithms for the modern
CPU architectures, we can achieve performance similar to GPU
databases, without limiting deployment options.

8 CONCLUSION
We introduce BIPie, a scan engine for ad-hoc analytical queries
executed on compressed columnar data implemented in MemSQL.
BIPie includes a collection of SIMD-friendly selection and aggrega-
tion algorithms, each optimal for a range of parameters. We intro-
duce a new selection technique, the Special Group selection, opti-
mized for higher selectivity when combined with aggregation. We
present new SIMD-accelerated aggregation techniques. In-register
aggregation is optimized for cases when the number of bits per
value is small, and the number of groups is small. Multi-Aggregate
takes advantage of SIMD to process multiple aggregates simulta-
neously. We evaluate the performance of those aggregation and
selection techniques across a broad range of parameters. Then, we
evaluate the end-to-end performance of those improved techniques
in the context of the TPC-H query 1 benchmark. By normalizing
query performance, we estimate that BIPie outperforms the best
previously published result by 3.3x. We demonstrate that BIPie can
compute query 1 in less than 9 CPU cycles per row.
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